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Abstract
We explicitly calculate the Riemannian curvature of D-dimensional metrics
recently discussed by Chen, Lü and Pope. We find that it can be concisely
written by using a single function. The Einstein condition which corresponds
to the Kerr–NUT–de Sitter metric is clarified for all dimensions. It is shown
that the metrics are of type D.

PACS numbers: 02.40.Ky, 04.70.Bw

1. Introduction

In recent years, studies of exact solutions to the higher dimensional Einstein equations have
attracted much attention in the context of supergravity and superstring theories [1–6]. Here,
we revisit a class of D-dimensional metrics discussed by Chen, Lü and Pope [6]:

(a) D = 2n

g =
n∑

µ=1

dx2
µ

Qµ

+
n∑

µ=1

Qµ

(
n−1∑
k=0

A(k)
µ dψk

)2

, (1.1)

(b) D = 2n + 1

g =
n∑

µ=1

dx2
µ

Qµ

+
n∑

µ=1

Qµ

(
n−1∑
k=0

A(k)
µ dψk

)2

+ S

(
n∑

k=0

A(k) dψk

)2

. (1.2)

The functions Qµ(µ = 1, 2, . . . , n) are given by

Qµ = Xµ

Uµ

, Uµ =
n∏

ν=1
(ν �=µ)

(
x2

µ − x2
ν

)
, (1.3)
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where Xµ is an arbitrary function depending only on xµ. The remaining functions are

A(k)
µ =

∑
1�ν1<ν2<···<νk�n

(νi �=µ)

x2
ν1

x2
ν2

· · · x2
νk

, A(k) =
∑

1�ν1<ν2<···<νk�n

x2
ν1

x2
ν2

· · · x2
νk

, (1.4)

(
A(0)

µ = A(0) = 1
)

and S = c/A(n) with a constant c. It has been shown by means of computer
calculation that the metrics satisfy the Einstein equations Ric(g) = �g for dimensions D � 15
if Xµ takes the form

(a) D = 2n

Xµ =
n∑

k=0

c2kx
2k
µ + bµxµ, (1.5)

(b) D = 2n + 1

Xµ =
n∑

k=1

c2kx
2k
µ + bµ +

(−1)nc

x2
µ

, (1.6)

where c, c2k and bµ are free parameters. This class of metrics gives the Kerr–NUT–de Sitter
metric [6], and the solutions in [1–5] are recovered by choosing special parameters. However,
the explicit Riemannian curvature was not given in their analysis. So it is obscure how
the metrics become solutions to the Einstein equations. In this paper we give a systematic
investigation of the Riemannian curvature. We show that it can be concisely written by using a
single function. We also prove that metrics (1.1) and (1.2) are of type D and under conditions
(1.5) and (1.6) they become Einstein metrics for all dimensions. This family of metrics is also
interesting from the point of view of AdS/CFT correspondence. Indeed, odd-dimensional
Einstein metrics lead to Sasaki–Einstein metrics by taking the BPS limit [6–9] and even-
dimensional Einstein metrics lead to Calabi–Yau metrics in the limit [6, 10, 11]. Especially,
the five-dimensional Sasaki–Einstein metrics have emerged quite naturally in the AdS/CFT
correspondence.

2. D = 2n

For metric (1.1), we introduce the following orthonormal frame {ea} = {eµ, en+µ}(µ = 1,

2, . . . , n):

eµ = dxµ√
Qµ

, en+µ = √
Qµ

(
n−1∑
k=0

A(k)
µ dψk

)
. (2.1)

Using the first structure equation

dea + ωa
b ∧ eb = 0 (2.2)

and ωab = −ωba , we obtain connection 1-forms ωab. A straightforward calculation gives

ωµν = (1 − δµν)

[
− xν

√
Qν

x2
µ − x2

ν

eµ − xµ

√
Qµ

x2
µ − x2

ν

eν

]
,

ωµ,n+ν = δµν


−∂(

√
Qµ)

∂xµ

en+µ +
n∑

ρ=1
(ρ �=µ)

xµ

√
Qρ

x2
µ − x2

ρ

en+ρ
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+ (1 − δµν)

[
−xµ

√
Qµ

x2
µ − x2

ν

en+ν +
xµ

√
Qν

x2
µ − x2

ν

en+µ

]
,

ωn+µ,n+ν = (1 − δµν)

[
− xµ

√
Qν

x2
µ − x2

ν

eµ − xν

√
Qµ

x2
µ − x2

ν

eν

]
.

(2.3)

From the second structure equation

Rab = dωab + ωac ∧ ωc
b, (2.4)

we can calculate the curvature 2-forms Rab. It is convenient to introduce a quantity

QT =
n∑

µ=1

Qµ. (2.5)

We find (µ �= ν)

Rµν = − 1

2
(
x2

µ − x2
ν

) (
xµ

∂QT

∂xµ

− xν

∂QT

∂xν

)
eµ ∧ eν

− 1

2
(
x2

µ − x2
ν

) (
xν

∂QT

∂xµ

− xµ

∂QT

∂xν

)
en+µ ∧ en+ν,

Rµ,n+µ = −1

2

∂2QT

∂x2
µ

eµ ∧ en+µ

+
∑
ρ �=µ

1

x2
µ − x2

ρ

(
xµ

∂QT

∂xρ

− xρ

∂QT

∂xµ

)
eρ ∧ en+ρ, (no sum)

Rµ,n+ν = − 1

2
(
x2

µ − x2
ν

) (
xµ

∂QT

∂xµ

− xν

∂QT

∂xν

)
eµ ∧ en+ν

+
1

2
(
x2

µ − x2
ν

) (
xµ

∂QT

∂xν

− xν

∂QT

∂xµ

)
eν ∧ en+µ,

Rn+µ,n+ν = − 1

2
(
x2

µ − x2
ν

) (
xν

∂QT

∂xµ

− xµ

∂QT

∂xν

)
eµ ∧ eν

− 1

2
(
x2

µ − x2
ν

) (
xµ

∂QT

∂xµ

− xν

∂QT

∂xν

)
en+µ ∧ en+ν .

(2.6)

Let Iµ be the differential operator

Iµ = 1

2

∂2

∂x2
µ

+
∑
ρ �=µ

1

x2
ρ − x2

µ

(
xρ

∂

∂xρ

− xµ

∂

∂xµ

)
. (2.7)

The components Rab = ∑2n
c=1 Rc

acb of the Ricci curvature are calculated as

Rµν = Rn+µ,n+ν = −δµνIµ(QT ). (2.8)

Using the expression QT = ∑n
µ=1(Xµ/Uµ), we have

Iµ(QT ) = 1

2

X′′
µ

Uµ

+
∑
ρ �=µ

1

x2
ρ − x2

µ

(
xρ

X′
ρ

Uρ

+ xµ

X′
µ

Uµ

)
−

∑
ρ �=µ

1

x2
ρ − x2

µ

(
Xρ

Uρ

+
Xµ

Uµ

)
, (2.9)

where X′
µ = dXµ/dxµ and X′′

µ = d2Xµ

/
dx2

µ. Thus, the scalar curvature R = ∑2n
a=1 Raa

takes the form

R = −
n∑

µ=1

X′′
µ

Uµ

. (2.10)
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2.1. Einstein condition

We first study a condition R = const. By (2.10) and the identities
n∑

µ=1

x2(n−1)
µ

Uµ

= 1,

n∑
µ=1

x2k
µ

Uµ

= 0 (2.11)

(k = 0, 1, . . . , n − 2), it is easy to see that the function

Xµ =
n∑

k=1

c2kx
2k
µ + bµxµ + dµ (2.12)

gives a constant scalar curvature R = −2n(2n − 1)c2n for arbitrary constants c2k, bµ and dµ.
Conversely, we can show that the condition R = const implies (2.12). In fact, from (2.10) one
has

RUµ = −X′′
µ −

∑
ν �=µ

P ν
µX′′

ν , (2.13)

where

P ν
µ = Uµ

Uν

= −
∏

σ �=µ,ν

(
x2

µ − x2
σ

)
∏

λ �=µ,ν

(
x2

ν − x2
λ

) . (2.14)

Applying the differential operator (∂/∂xµ)2n−1 to this relation we obtain(
d

dxµ

)2n+1

Xµ = 0, (2.15)

which means that Xµ must be polynomials of order 2n. Taking Xµ in the general polynomials
of order 2n we infer from (2.13) that they have the form (2.12). Thus, we have shown that the
scalar curvature is a constant if and only if Xµ takes the form (2.12).

Now, we can examine the Einstein condition, i.e. Rab = �δab, where � represents a
cosmological constant. Substituting (2.12) into (2.9) we obtain

Rµν = Rn+µ,n+ν = δµν(−(2n − 1)c2n + Kµ), (2.16)

where

Kµ =
∑
ρ �=µ

1

x2
ρ − x2

µ

(
dρ

Uρ

+
dµ

Uµ

)
. (2.17)

The Einstein condition requires K1 = K2 = · · · = Kn = const. This implies d1 = d2 = · · · =
dn, and then Kµ = 0. Therefore, denoting the common value of dµ by c0 we reproduce the
function Xµ given in (1.5). It should be noted that

QT =
n∑

µ=1

Xµ

Uµ

= c2n

n∑
µ=1

x2
µ + c2n−2 + V, (2.18)

where

V =
n∑

µ=1

bµxµ

Uµ

. (2.19)

The Ricci curvature is given by

Rab = (2n − 1)λδab, (2.20)
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with λ = −c2n. From (2.6) the corresponding curvature 2-forms are written as (µ �= ν)

Rµν =
[
λ − 1

2
(
x2

µ − x2
ν

) (
xµ

∂V

∂xµ

− xν

∂V

∂xν

)]
eµ ∧ eν

− 1

2
(
x2

µ − x2
ν

) (
xν

∂V

∂xµ

− xµ

∂V

∂xν

)
en+µ ∧ en+ν,

Rµ,n+µ =
(

λ − 1

2

∂2V

∂x2
µ

)
eµ ∧ en+µ

+
∑
ρ �=µ

1

x2
µ − x2

ρ

(
xµ

∂V

∂xρ

− xρ

∂V

∂xµ

)
eρ ∧ en+ρ, (no sum)

Rµ,n+ν =
[
λ − 1

2
(
x2

µ − x2
ν

) (
xµ

∂V

∂xµ

− xν

∂V

∂xν

)]
eµ ∧ en+ν

+
1

2
(
x2

µ − x2
ν

) (
xµ

∂V

∂xν

− xν

∂V

∂xµ

)
eν ∧ en+µ,

Rn+µ,n+ν = − 1

2
(
x2

µ − x2
ν

) (
xν

∂V

∂xµ

− xµ

∂V

∂xν

)
eµ ∧ eν

+

[
λ − 1

2
(
x2

µ − x2
ν

) (
xµ

∂V

∂xµ

− xν

∂V

∂xν

)]
en+µ ∧ en+ν .

(2.21)

If we put bµ = 0 for all µ, then equations represent the constant curvature space,
Rab = λea ∧ eb.

2.2. Kähler condition

The natural Kähler form associated with metric (1.1) is

ω =
n∑

µ=1

eµ ∧ en+µ

=
n∑

µ=1

dxµ ∧
(

n−1∑
k=0

A(k)
µ dψk

)
. (2.22)

This 2-form is not closed, but there exists a scaling limit in which it becomes closed. Indeed
we can take a limit xµ = 1 + εξµ(ε → 0) together with a suitable transformation of the
coordinates ψk .3 Then, we have a closed 2-form in the form ω = ∑n

i dσi ∧ dt i , where σi are
the elementary symmetric polynomials of ξµ s. Now metric (1.1) reduces to the Kähler metric
presented in [13] (see proposition 11).

3. D = 2n + 1

For metric (1.2), we introduce the following orthonormal frame {êa} = {êµ, ên+µ, ê2n+1}
(µ = 1, 2, . . . , n):

êµ = eµ, ên+µ = en+µ, ê2n+1 =
√

S

(
n∑

k=0

A(k) dψk

)
, (3.1)

3 The scaling limit in four dimension was explicitly given in [12].
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where eµ and en+µ are defined by (2.1). The connection 1-forms ω̂ab are given by

ω̂µν = ωµν,

ω̂µ,n+ν = ωµ,n+ν + δµν

√
S

xµ

ê2n+1,

ω̂n+µ,n+ν = ωn+µ,n+ν,

ω̂µ,2n+1 =
√

S

xµ

ên+µ −
√

Qµ

xµ

ê2n+1,

ω̂n+µ,2n+1 = −
√

S

xµ

êµ,

(3.2)

with ωab defined by (2.3). Shifting the arbitrary function Xµ by

Xµ = X̂µ +
(−1)nc

x2
µ

, (3.3)

we have

QT = Q̂T − S, Q̂T =
n∑

µ=1

X̂µ

Uµ

. (3.4)

Then, the curvature 2-forms R̂µν, R̂µ,n+ν and R̂n+µ,n+ν are obtained by the replacement
QT → Q̂T in (2.6), and the remaining ones are calculated as

R̂µ,2n+1 = − 1

2xµ

∂Q̂T

∂xµ

êµ ∧ ê2n+1, R̂n+µ,2n+1 = − 1

2xµ

∂Q̂T

∂xµ

ên+µ ∧ ê2n+1. (3.5)

The Ricci curvature R̂ab and the scalar curvature R̂ are given by

R̂µν = R̂n+µ,n+ν = −δµν

(
Iµ(Q̂T ) +

1

2xµ

∂Q̂T

∂xµ

)
, R̂2n+1,2n+1 = −

∑
ρ

1

xρ

∂Q̂T

∂xρ

(3.6)

and

R̂ = −
n∑

µ=1

X̂′′
µ

Uµ

− 2
n∑

µ=1

1

xµ

X̂′
µ

Uµ

. (3.7)

3.1. Einstein condition

Using similar arguments to the case of D = 2n, we can show that the scalar curvature is a
constant if and only if Xµ takes of the form

Xµ =
n∑

k=1

c2kx
2k
µ + bµ +

dµ

xµ

+
(−1)nc

x2
µ

. (3.8)

Then the components of the Ricci curvature are

R̂µν = R̂n+µ,n+ν = −δµν


2nc2n +

1

2

dµ

x3
µUµ

−
∑
ρ �=µ

(
dρ

xρUρ

+
dµ

xµUµ

)
 ,

R̂2n+1,2n+1 = −2nc2n +
n∑

µ=1

dµ

x3
µUµ

,

(3.9)
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which satisfy the Einstein condition if and only if dµ vanishes for all µ. Thus we reproduce
the function Xµ given in (1.6). Now R̂ab = 2nλδab with λ = −c2n and QT is given by

QT = c2n


 n∑

µ=1

x2
µ


 + c2n−2 + V̂ − S, (3.10)

where

V̂ =
n∑

µ=1

bµ

Uµ

. (3.11)

By substituting these expressions into (2.6) and (3.5), we obtain (2.21) replaced V with V̂ ,
and

R̂µ,2n+1 =
(

λ − 1

2xµ

∂V̂

∂xµ

)
eµ ∧ ê2n+1, R̂n+µ,2n+1 =

(
λ − 1

2xµ

∂V̂

∂xµ

)
en+µ ∧ ê2n+1.

(3.12)

If we choose all of bµ as an equal value, then V̂ = 0 and hence the equations represent the
constant curvature space.

4. Concluding remarks

We have explicitly calculated the Riemannian curvature corresponding to metrics (1.1) and
(1.2). The components have a compact expression by introducing the single function QT . We
have also proved that conditions (1.5) and (1.6) lead to the Einstein metrics for all dimensions.

Finally, we comment on type D condition [14]. For fixed µ, let us define the complex
vector fields4

k = Q−1/2
µ (eµ + ien+µ)/

√
2, � = Q1/2

µ (eµ − ien+µ)/
√

2. (4.1)

Then {k, �, eα}(α �= µ, n + µ) gives a null orthonormal frame for (1.1) or (1.2):

〈k, k〉 = 〈�, �〉 = 0, 〈k, �〉 = 1,

〈k, eα〉 = 〈�, eα〉 = 0, 〈eα, eβ〉 = δα,β .
(4.2)

The covariant derivatives are given by ∇eb
ea = ωca(eb)ec, which can be easily calculated by

(2.3) and (3.2). Especially, we have

∇kk = 0, (4.3)

which means that the integral curve of k is a geodesic. It is easy to confirm that the Weyl
curvature satisfies the type D condition:

W(k, eα, eβ, eγ ) = W(�, eα, eβ, eγ ) = 0, W(k, eα, k, eβ) = W(�, eα, �, eβ) = 0,

W(k, �, k, eα) = W(k, �, �, eα) = 0. (4.4)

Acknowledgments

This work is supported by the 21 COE program ‘Construction of wide-angle mathematical
basis focused on knots’. The work of YY is supported by the grant-in aid for Scientific
Research (nos. 17540262 and 17540091) from Japan Ministry of Education. The work of TO
is supported by the grant-in aid for Scientific Research (no. 18540285) from Japan Ministry
of Education.
4 The vector fields ea are dual to the 1-forms ea given in (2.1) and (3.1).



F184 Fast Track Communication

References

[1] Myers R C and Perry M J 1986 Black holes in higher dimensional space-times Ann. Phys. 172 304
[2] Hawking S W, Hunter C J and Taylor-Robinson M M 1999 Rotation and the AdS/CFT correspondence Phys.

Rev. D 59 064005 (Preprint hep-th/9811056)
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